MediaPipe in TouchDesigner 5

This is the continuation of the last post with slight modifications. Instead of just displaying the face mesh details in a Script TOP, it tries to visualise all the face mesh points in a 3D space. As the facial landmarks returned from the MediaPipe contain three dimensional information, it is possible to enumerate all the points and display them in a Script SOP. We are going to use the appendPoint() function to generate the point cloud and the appendPoly() function to create the face mesh.

The data returned from the MediaPipe contains the 468 facial landmarks, based on the Canonical Face Model. The face mesh information (triangles), however, is not available from the results obtained from the MediaPipe solutions. Nevertheless, we can obtain such information from the meta data of the facial landmarks from its GitHub. To simplify the process, I have edited the data into this CSV mesh file. It is expected that the mesh.csv file is located in the TouchDesigner project folder, together with the TOE project file. Here are the first few lines of the mesh.csv file,


Each line is the data for a triangular mesh of the face. The 3 numbers are the indices of the vertices defined in the 468 facial landmarks. The visualisation of the landmarks is also available in the MediaPipe GitHub.

Canonical face model
Image from the Google MediaPipe GitHub

The TouchDesigner project will render the Script SOP with the standard Geometry, Camera, Light and the Render TOP.

I’ll not go through all the code here. The following paragraphs cover some of the essential elements in the Python code. The first one is the initialisation of the face mesh information from the mesh.csv file.

triangles = []
mesh_file = project.folder + "/mesh.csv"
mf = open(mesh_file, "r")
mesh_list ='\n')
for m in mesh_list:
    temp = m.split(',')
    x = temp[0]
    y = temp[1]
    z = temp[2]
    triangles.append([x, y, z])

The variable triangles is the list of all triangles from the canonical face model. Each entry is a list of 3 indices to the entries of the corresponding points in the 468 facial landmarks. The second one is the code to generate the face point cloud and the mesh.

for pt in landmarks:
    p = scriptOp.appendPoint()
    p.x = pt.x
    p.y = pt.y
    p.z = pt.z

for poly in triangles:         
    pp = scriptOp.appendPoly(3, closed=True, addPoints=False)  
    pp[0].point = scriptOp.points[poly[0]]        
    pp[1].point = scriptOp.points[poly[1]]       
    pp[2].point = scriptOp.points[poly[2]]

The first for loop creates all the points from the facial landmarks using the appendPoint() function. The second for loop creates all the triangular meshes from information stored in the variable triangles using the appendPoly() function.

After we draw the 3D face model, we also compute the normals of the model by using another Attribute Create SOP.

The final TouchDesigner project is available in the MediaPipeFaceMeshSOP repository.

MediaPipe in TouchDesigner 4

The following example is a simple demonstration of the Face Mesh function from MediaPipe in TouchDesigner. It is very similar to the previous face detection example. Again, we are going to use the Script TOP to integrate with MediaPipe and display the face mesh information together with the live webcam image.

Instead of flipping the image vertically in the Python code, this version will perform the flipping in the TouchDesigner Flip TOP, both vertically and horizontally (mirror image). We also reduce the resolution from the original 1280 x 720 to 640 x 360 for better performance. The Face Mesh information is drawn directly to the output image in the Script TOP.

Here is also the Python code in the Script TOP

# me - this DAT
# scriptOp - the OP which is cooking
import numpy
import cv2
import mediapipe as mp

mp_drawing =
mp_face_mesh =

point_spec = mp_drawing.DrawingSpec(
    color=(0, 100, 255),
line_spec = mp_drawing.DrawingSpec(
    color=(255, 200, 0),
face_mesh = mp_face_mesh.FaceMesh(

# press 'Setup Parameters' in the OP to call this function to re-create the parameters.
def onSetupParameters(scriptOp):
    page = scriptOp.appendCustomPage('Custom')
    p = page.appendFloat('Valuea', label='Value A')
    p = page.appendFloat('Valueb', label='Value B')

# called whenever custom pulse parameter is pushed
def onPulse(par):

def onCook(scriptOp):
    input = scriptOp.inputs[0].numpyArray(delayed=True)
    if input is not None:
        frame = input * 255
        frame = frame.astype('uint8')
        frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
        results = face_mesh.process(frame)
        if results.multi_face_landmarks:
            for face_landmarks in results.multi_face_landmarks:

       frame = cv2.cvtColor(frame, cv2.COLOR_RGB2RGBA)

Similar to previous examples, the important code is in the onCook function. The face_mesh will process each frame and draw the results in the frame instance for final display.

The TouchDesigner project is now available in the MediaPipeFaceMeshTOP folder of the GitHub repository.